The method of radial basis functions for the solution of nonlinear Fredholm integral equations system.

نویسندگان

  • H. Almasieh Department of Mathematics, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran
  • J. Nazari Department of Mathematics, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran
  • M. Nili Ahmadabadi Department of Mathematics, Najafabad Branch, Islamic Azad University, Najafabad, Iran
چکیده مقاله:

In this paper, An effective and simple numerical method is proposed for solving systems of integral equations using radial basis functions (RBFs). We present an algorithm based on interpolation by radial basis functions including multiquadratics (MQs), using Legendre-Gauss-Lobatto nodes and weights. Also a theorem is proved for convergence of the algorithm. Some numerical examples are presented and results are compared to the analytical solution and Triangular functions (TF), Delta basis functions (DFs), block-pulse functions , sinc fucntions, Adomian decomposition, computational, Haar wavelet and direct methods to demonstrate the validity and applicability of the proposed method.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

the method of radial basis functions for the solution of nonlinear fredholm integral equations system.qqq

in this paper, an effective and simple numerical method is proposed for solving systems of integral equations using radial basis functions (rbfs). we present an algorithm based on interpolation by radial basis functions including multiquadratics (mqs), using legendre-gauss-lobatto nodes and weights. also a theorem is proved for convergence of the algorithm. some numerical examples are presented...

متن کامل

A meshless technique for nonlinear Volterra-Fredholm integral equations via hybrid of radial basis functions

In this paper, an effective technique is proposed to determine thenumerical solution of nonlinear Volterra-Fredholm integralequations (VFIEs) which is based on interpolation by the hybrid ofradial basis functions (RBFs) including both inverse multiquadrics(IMQs), hyperbolic secant (Sechs) and strictly positive definitefunctions. Zeros of the shifted Legendre polynomial are used asthe collocatio...

متن کامل

existence and approximate $l^{p}$ and continuous solution of nonlinear integral equations of the hammerstein and volterra types

بسیاری از پدیده ها در جهان ما اساساً غیرخطی هستند، و توسط معادلات غیرخطی ‎‏بیان شد‎‎‏ه اند. از آنجا که ظهور کامپیوترهای رقمی با عملکرد بالا، حل مسایل خطی را آسان تر می کند. با این حال، به طور کلی به دست آوردن جوابهای دقیق از مسایل غیرخطی دشوار است. روش عددی، به طور کلی محاسبه پیچیده مسایل غیرخطی را اداره می کند. با این حال، دادن نقاط به یک منحنی و به دست آوردن منحنی کامل که اغلب پرهزینه و ...

15 صفحه اول

a meshless technique for nonlinear volterra-fredholm integral equations via hybrid of radial basis functions

in this paper, an effective technique is proposed to determine thenumerical solution of nonlinear volterra-fredholm integralequations (vfies) which is based on interpolation by the hybrid ofradial basis functions (rbfs) including both inverse multiquadrics(imqs), hyperbolic secant (sechs) and strictly positive definitefunctions. zeros of the shifted legendre polynomial are used asthe collocatio...

متن کامل

A meshless method for optimal control problem of Volterra-Fredholm integral equations using multiquadratic radial basis functions

In this paper, a numerical method is proposed for solving optimal control problem of Volterra integral equations using radial basis functions (RBFs) for approximating unknown function. Actually, the method is based on interpolation by radial basis functions including multiquadrics (MQs), to determine the control vector and the corresponding state vector in linear dynamic system while minimizing...

متن کامل

Evaluating the solution for second kind nonlinear Volterra Fredholm integral equations using hybrid method

In this work, we present a computational method for solving second kindnonlinear Fredholm Volterra integral equations which is based on the use ofHaar wavelets. These functions together with the collocation method are thenutilized to reduce the Fredholm Volterra integral equations to the solution ofalgebraic equations. Finally, we also give some numerical examples that showsvalidity and applica...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


عنوان ژورنال

دوره 06  شماره 01

صفحات  11- 28

تاریخ انتشار 2017-03-01

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023